PRELIMINARY NOTE

Niobium Organometallic Chemistry. Part II ^{*} : Unexpected Synthesis of a Complex containing Niobium - Fluorine Bonds. Crystal Structure of a fluorinated Niobiacyclopentadiene Compound.

JEAN SALA-PALA^a, JACQUES AMAUDRUT^a, JACQUES E. GUERCHAIS^a, RENE MERCIER^b and MICHELLE CERUTTI^b.

- a) Laboratoire de chimie inorganique moléculaire, ERA CNRS 822, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, 29283 BREST-Cedex, France.
- b) Faculté des Sciences & Techniques, 25030 BESANCON-Cedex, France.

A wide variety of bis(cyclopentadienyl)niobium complexes with substitued acetylenes has recently been synthesised. The preparation of the stable complexes $Cp_2NbX(R_1-C\equiv C-R_2)$ (I) ($Cp = n^5-C_5H_5$; X = H; R_1 = R_2 = Me, nPr; $R_1 = Me$, $R_2 = iPr$, nPr) from Cp_2NbH_3 has been reported [2]. CH_3I converted the compounds (I) to the iodo-analogs (X = I) while CO caused smooth conversion to carbonyl (alkylenyl)complexes $Cp_2Nb(C0)(R_1C=CR_2H)$ [2]. The chloro-analogs of (I) $Cp_2NbC1(R_1-C\equiv C-R_2)$ (X = C1; $R_1=R_2=CF_3$; $R_1=CH_3$, $R_2=H$) have been prepared by the reaction of substitued acetylenes with Cp_2NbCl_2 in the presence of sodium amalgam [3].

We now find that the reaction of a highly electron withdrawing acetylene (hexafluorobutyne hfb; $R_1=R_2=CF_3$) with Cp_2NbH_3 is much more complex than thought and results in the reduction of niobium and in the formation of new niobium (IV) complexes. Irradiation of a toluene solution of Cp_2NbH_3 [2] in the presence of hexafluorobutyne affords after further workup four new compounds (1) (yield ca 30%), (2) (ca 20%), (3) (ca 10%) and (4) (very low yield).

^{*} See reference [1]

Complex (<u>1</u>) is a brown air-sensitive compound, very sparingly soluble in organic solvents. (<u>1</u>) was identified as the new difluoro derivative Cp_2NbF_2 from analytical data and the following properties :

- infrared data : the spectrum shows no bands characteristic of CF₃ groups in the 1000-1200 cm⁻¹ range but exhibits the usual $n^5-C_5H_5$ peaks and two extra bands at 520 and 480 cm⁻¹ assignable to $\nu(\text{Nb-F})$ [4];

- ESR spectrum (CH₂Cl₂ solution at room temperature) : ten lines arise from $^{93}\rm Nb$ coupling, each of these being split into three lines due to hyperfine coupling with two equivalent fluorine atoms (<a_Nb^> = 115 G; <a_r> = 22 G).

On the basis of these results and high-resolution mass spectroscopy (parent peak at m/e 260.9820; calculated for NbC₁₀H₁₀F₂ m/e 260.9814), we propose that Cp₂NbF₂ has the usual structure of $(n^5-c_5H_5)_2MX_2$ complexes [5]. (1) is the first bis(cyclopentadienyl)niobium derivative containing Nb-F bonds Its formation from CF₃-C=C-CF₃ was unexpected although the cleavage of C-F in hexafluorobutyne has been seen in other reactions of this molecule with nucleophiles [6].

Analytical results for the green compound (<u>2</u>) show the hbf/Nb ratio is equal to 2. The ¹H and ¹⁹F N.M.R. spectra show no signals despite a high solubility in almost all organic solvents. However, (<u>2</u>) exhibits a beautiful E.S.R. spectrum (in T.H.F. solution at room temperature) of ten lines due to coupling of the unpaired electron with ⁹³Nb (g = 2.0010, <a_{Nb}> = 64 G). The above results and the high-resolution mass spectrum (parent peak at m/e 546.9654, calculated for NbC₁₈F₁₂H₁₀ m/e 546.9655) suggest that (<u>2</u>) is a niobiacyclopentadiene complex or a coordinated butadiene complex rather than a bis(σ -alkylenyl)complex.

In view of this uncertainty, a single-crystal X-ray crystallographic investigation was undertaken [7]. It confirms that (2) is a niobiacy-clopentadiene derivative. The NbC₄ ring is located on a crystallographic mirror plane and the π -electron framework is largely localized between C₂-C₃ and C₆-C₇ (C₂-C₃=1.30 Å; C₆-C₇=1.29 Å; C₂-C₆=1.50 Å; Nb-C₃=2.24 Å; Nb-C₇=2.22 Å)(see carbon atom numbering on the figure). These features are similar to those reported by MAGUE [8] for the RhC₄ ring in RhCl(H₂0)[As(CH₃)₃](hfb)₂. No structural data was given for the niobia-and vanadia-cyclopentadiene compounds recently prepared from Cp₂MCl₂ (M=Nb,V) and 1,4-dilithio-tetraphenylbutadiene [9].

Compounds (<u>3</u>) and (<u>4</u>) were respectively identified as the new complexes $Cp_2NbF[C(CF_3)=CH(CF_3)]$ and $Cp_2NbH[C(CF_3)\equiv C(CF_3)]$.

270

 $\frac{\text{Figure}}{\text{on the crystallographic mirror plane which contains the following atoms : Nb, C_1, C_2, \dots, C_8, F_{11}, F_{41}, F_{51} and F_{81}. }$

References

- Part I : J. Amaudrut, J.E. Guerchais and J. Sala-Pala, J.Organomet.Chem., 157(1978)C10.
- 2. J.A. Labinger and J.F. Schwartz, J.Amer.Chem.Soc.,97(1975)1596.
- 3. S. Fredericks and J.L. Thomas, J.Amer.Chem.Soc., 100(1978)350.
- See for instance J.Sala-Pala, J.Y. Calvès and J.E. Guerchais, J.Inorg. Nucl.Chem., 37(1975)1294.
- K. Prout, T.S. Cameron, R.A. Forder, S.R. Critchley, B. Denton and G.V. Rees, Acta Cryst., B30(1974)2290.
- 6. a) R.J. Goodfellow, M.Green, N. Mayne, A.J. Rest and F.G.A. Stone, J.Chem.Soc.(A)(1968)177.
 - b) P.M. Treichel, W.K. Wong and J.C. Calabrese, J.Organomet.Chem., 159(1978)C20.
- 7. R. Mercier and J. Douglade, to be published. The conventional R is 0.09 with anisotropic factors for all atoms except hydrogens.
- 8. J.T. Mague, Inorg.Chem., 12(1973)2649.
- 9. a) D.A. Lemenovskii, T.V. Baukova, G. Zyzik, V.A. Knizhnikov, V.P.Fedin and E.G. Peralova, Koord.Khim.,4(1978)1033.
 - b) T.M. Vogelaar-Van Der Huizen and J.H. Teuben, J.Organometal.Chem., 105(1976)321.